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Combined free and forced convection for developed f low in a curved pipe with arbitrary 
curvature ratio is studied numerically. The curved pipe is heated with axially uniform heat 
flux, while the wall temperature is maintained peripherally uniform. The buoyancy force 
is accounted by the Boussinesq approximation. The effects of the Dean, Prandtl, and 
Rayleigh numbers and especially of a wide range of curvature ratios on the flow resistance 
and the average heat transfer rate are presented. The significant distortion of the dividing 
streamline and the appearance of the secondary flow with one dominant cell for pipe f low 
with higher buoyancy force and curvature ratio are also discussed. 
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I n t r o d u c t i o n  

One prominent feature of the flow in a curved pipe 
is the appearance of a centrifugal-force-induced secondary flow 
present on the cross-sectional plane. In general, the existence 
of the secondary flow enhances heat and mass transfer rates 
and increases the skin friction. Dean (1927) was the first 
researcher for this problem who employed a perturbation 
technique to analyze secondary flow in a curved pipe. 
Thereafter, many studies on extending this topic by either 
theoretical or experimental means have been reported (Seban 
and McLaughlin 1963; Mori and Nakayama 1965; Truesdell 
and Adler 1970; Larrain and BoniUa 1970; Akiyama and Cheng 
1971; Kalb and Seader 1972; Austin and Seader 1973; 
Patankar, Pratap, and Spalding 1974; Soh and Berger 1987; 
Yang and Chang 1993). A common assumption for most of the 
previous studies is that the momentum and energy equations 
are uncoupled. However, secondary flow can also be induced 
by a buoyancy force in heated curved pipe flows. 

Morton (1959) showed that if a temperature distribution is 
present in a horizontal heated straight pipe, the varying 
gravitational force due to the difference in density causes a 
motion of fluid elements in the vertical direction. This effect 
forces secondary flow to form two vertical vortices with a 
vertical dividing streamline. Yao and Berger (1978) employed 
a perturbation method to analyze the influence of both 
centrifugal and buoyancy forces on the flow in heated curved 
pipes, and showed that the buoyancy effect can indeed be as 
important as the effect of the centrifugal force for small Dean 
number flows. Prusa and Yao (1982) numerically accounted for 
the combined effects of buoyancy and centrifugal forces in 
heated curved tubes with 0(6)<~ 1, where 6 is the curvature 
ratio of a curved pipe. They provided a flow-regime map to 
indicate the three basic regimes: (1) the regime with centrifugal 
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force dominant, (2) the regime with both buoyancy and 
centrifugal force important, and (3) the regime with buoyancy 
force dominant. Lee et al. (1985) numerically studied the 
influence of buoyancy on fully developed laminar flow in 
curved tubes of circular cross section. They also presented a 
plot showing the relative importance of the buoyancy and the 
centrifugal effects. The aforementioned studies for buoyancy 
effect are restricted to small curvature ratio, iS. There remains 
to be studied the buoyancy effect in curved pipe flow with finite 
curvature ratio. 

In addition, Cheng and Yuen (1987) reported a flow 
visualization on secondary flow patterns in a heated curved 
pipe by the smoke-injection method. They showed how the 
buoyancy and the curvature effects distort the dividing 
streamline of the secondary flow and the appearance of one 
dominant cell flow and a crescent region. They concluded that 
the symmetry of the secondary flow field can be maintained 
only when the viscosity effect is dominant over the body 
force effect. These phenomena have not yet been studied 
theoretically. 

Therefore, the intention of the present work is to study, 
numerically, combined free and force convection for developed 
flow in heated curved pipes with arbitrary curvature ratio, 
especially for 6 > 0.2, and to demonstrate the existence of a 
dominant cell flow due to the increased buoyancy force and 
curvature ratio. Since curved pipe flow is widely employed in 
industrial heat exchangers, chemical reactors, and many other 
devices, the present work adds completeness to the study of the 
problem. A special application of this study is for improving 
solar-collector performance by using curved pipes. 

M a t h e m a t i c a l  f o r m u l a t i o n  

The physical problem considered in this study is a fully 
developed laminar incompressible flow in an axially uniformly 
heated curved pipe. Consequently, the pressure and the 
temperature gradients are constants along the main flow 
direction. The buoyancy force is accounted for by the 
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Boussinesq approximation, and viscous dissipation is ne- 
glected. A suitable coordinate system for describing the 
problem is a curvilinear coordinate system (r', ~b', 0') shown in 
Figure 1, and (u', v', w') are velocity components corresponding 
to (r', ~', 0') coordinates. The governing equations are 

V . 1 7 = 0  

1 
(17.V)17 = - - V P '  + vV217 - f l (T '  - T'~)~ (1) 

P 

(I 7. V)T' = aV2T ' 

The governing equations are nondimensionalized by 
defining the following dimensionless variables: 

a r' 0' u' v' w' 
6 = ~ ,  r = a ,  q~ = q~', O = - ~ ,  u : - - ,  V = ~ w c ,  W = - - ,  

N/~ W c We 

P'  wca 7 ' -  T '  f lgza 4 
P = pw¢2' Re~ = v ' De = 6Re~, T = ~aDe Pr '  Ra = - - v ~  

(2) 

N o t a t i o n  

a Pipe radius 
De Dean number, 6Re~ 
f Friction factor 
g Gravitational constant 

1 c~P' 
G Axial pressure gradient, - - - -  

R a0' 
h Local heat transfer coefficient 

Mean heat transfer coefficient 
k Fluid thermal conductivity 

2ah 
Nu Local Nusselt number, - -  

k 

2ah 
Nu Peripherally average Nusselt number, - -  

k 

Nondimensional pressure P - 
e t  

pW2o 
V 

Pr Prandti number, - 
Ct 

Q Volumetric flow rate 
R Radius of curvature 

gfl.ca 4 
Ra Rayleigh number, - -  

Re Reynolds number based on averaged axial velocity 
and pipe diameter 

Re s Reynolds number for corresponding straight pipe, 

w o a  

V 

Dimensionless temperature, - -  

Dimensionless radial velocity, - -  

r ~ -  T '  

z a D e  Pr 

U' 

,,/~Wo 

T 

W 

WO 

Greek  

D t 
Dimensionless tangential velocity, - -  

,f6Wo 
W t 

Dimensionless axial velocity, - -  
Wo 

Centerline velocity of developed flow in a straight 

Ga 2 
pipe with pressure gradient G, - -  

4# 

# 

P 

¢ 
(.O 

symbo l s  

Thermal diffusivity 
Coefficient of volumetric thermal expansion 
Curvature ratio, a i R  
Dimensionless angular coordinate in plane of pipe 

0' 
curvature, - -  

,/s 
Dynamic viscosity 
Kinematic viscosity 
Fluid density 

1 ~T' 
Axial temperature gradient, - - -  

R ~0' 

Angular coordinate in pipe cross section 
Dimensionless secondary-flow stream function 
Dimensionless axial vorticity 

Superscr ip t  

' Dimensional variables 

Subscr ip ts  

c Quantities associated with the curved pipe 
s Quantities associated with the straight pipe 
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where G = -aP’fRaB’ and r = aT’/RaW are the constant 
pressure gradient and the temperature gradient along the axial 
direction respectively, and w, and Re, represent the maximum 
velocity and Reynolds number, respectively, for a fully 
developed flow in a corresponding straight pipe with the same 
pressure gradient G, and Ra and De are the Rayleigh number 
and the modified Dean number, respectively. The dimensionless 
governing equations are as follows: 

Continuity: 

+g r cos r$)ru] + $ [(l - 6r cos &)u] = 0 

r-momentum: 

au v at4 v= w= cos r$ 1 ap ~-+---_+ 
ar r a4 r 1 -&cosd= -S ar 

- Ra T sin 4 

&--momentum: 

au u a0 u-+--++_ w2 sin f#~ i ap 
ar r a+ r 1--6rcos4=-6ra4 

+& -- 
K 

a 6cosl#l 
ar >( 

!+aU_!!! 
l-6rcos4 r ar r&p 

-RaTcos4 

&--momentum: 

aW v aw 6W U_-+--_- 
& r a4 1 - 6rcos$ 

(v sin 4 - u cos f$) 

(3) 

(4) 

(5) 

(6) 

a aW + A+- ( >( wscoscp _- 
r ar ar 1-6rcos4 >I 

Energy: 

aT, VaT W W 
u_+--- 

ar r a4 De P&l- 6r cos 4) = ,,6 Pr(l - 6r cos 4) 

(7) 

A stream function + can be defined to satisfy Equation 3 by 

1 a* 1 ati u= -,r= - 
+-6rcos4)a$ l-&cosf$dr 

(8) 

and the dimensionless vorticity w in the 0 direction is 
defined as 

au i au o=!+__-- 
r ar r a4 (9) 

Then, by substituting II/ and w into Equations 3 to 7 and 
eliminating the pressure terms in the r and C#I momentum 
equations, one ends up with the following equations: 

( a=* i a$ i a=$ 
q+;z+12 - 

> 

1 

( 

sin C$ a* a+ 

r a+ 1 - 6rcosq5 r a$ 
CO@% 

> 

+ (1 - 6r cos b)o = 0 (10) 

( a* do a+ am 

> ( 
+o!Y_ 

6r sin I$ a* ---_- 
ar a4 a45 ar ara4 1-6rcos4 ar > 

1 
+ 

K 

a=ti + 6~0~4 a+ a=$ 

1 - 6rcos$ &a4 1 -6rcos4 84 >k ar2 

i a=* 1 1 

+--+ 

a* 6cosf#l 1 w 

r2 ap 1 - 6rcosd r 41 ar 1 - Srcos$ r a4 

+ 2wr 
( 

cos 4 a* 
~ - +sind$ 

> 
= -~ 

r a4 ,:D. 

+ 6r ( sin 4 am a* a2ro 
---_-OS f$ ar 

> 
- 

r a4 1 - 6rcos+ 1 
sin f$ aT aT 

- rRa ~ - - cos C#J - 
r a$ dr 

(11) 

( aw a$ aw a$ 

> 

6rw 

( 

cos 4 a* 

ar a4 a4 ar 1 - 6rcos4 
- + sin 4 $ 

r ad > 

( sin I$ aw aW d2rw 
+6r ~-- 

- r 84 cos 6 ar > 
+ 4r 

1-6rcosd, 1 (12) 

aTa* aTa$ Srw 1 
--___ 
ar a+ a+ ar - ~ 

=p 

3DePr $%Pr 

( a=T 1 dT 2 

’ dr2 > ( 
sin 4 aT _+;z+ldT +&---- dT 

r2 ad2 r 84 - cos @ dr >I 
(13) 

The boundary conditions are no-slip conditions on the 
wall, axially uniform heat flux, and peripherally uniform wall 
temperature, and the value of the stream function qQ on the wall 
is assigned to zero. The boundary condition for the vorticity 
o can be derived from Equation 9. Therefore, the boundary 
conditions become the following: 

1 a=* WC- 
1 - 6R cos 4 ar2 ,=l 

(14) 

The parameters present in the dimensionless governing 
equations are the curvature ratio (a), the Dean number (De), 
the Rayleigh number (Ra), and the Prandtl number (Pr). 

By following Soh and Berger (1987), the friction ratio can be 
defined as the ratio of the flow rate in a curved pipe to that in 
a straight pipe for the same pressure gradient, i.e., 

fc Qs n -_=-_= 
f, Q, 2.f?.jl,wrdrd4 

(15) 
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The mean peripheral Nusselt number is defined by 

2ah SoZ*Nuc(1 - 6cos~)dq)  
Nuc = - -  = (16) 

2 z  k So (1 -- 6 cos 4) d~ 

where the local Nusselt number is defined as 

2ah -- 2 ~r ,=1 
Nu¢ = - -  = (17) 

k rm 

and T m is the dimensionless bulk mean temperature defined 
as 

S~o • g ~ ar d~ (18) 
Tm = $2o, $1 wr dr dc~ 

Numerical  method 

The governing equations are discretized into a set of 
finite-difference equations with a central-difference scheme. 
Since the dividing streamline between two vortices is generally 
distorted by the buoyancy effect, the horizontal line 
(~b = 0°-180 °) is no longer the symmetry line; therefore, the 
computational mesh should cover the entire cross section of 
the curved pipe. The grid number (25, 80) corresponding to 
(r, ~b) is considered sufficient after several tests of different grid 
sizes. 

The Gauss-Seidel iteration method is used for solving all 
governing equations. The straight-pipe parabolic velocity 
profile in the axial direction is employed as the initial guess, 
while other velocity components are set to zero initially. Also, 
low Dean-number flow solutions are used as the initial values 
for high Dean-number flow calculations in order to expedite 
the convergence rate. Underrelaxation is employed, and the 
relaxation factors are always between 0.5 to 0.8 for all 
governing equations. The convergence criterion is found to be 
sufficient when all relative errors of the dependent variables are 
less than 5 x I0 -s .  
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Results and discussion 

The results of the combined free and forced convection in a 
curved pipe with finite curvature ratio are presented in terms 
of the friction ratio fo/f, and the heat transfer ratio NuJNu---:. 
The secondary flow patterns and the profiles of the axial 
velocity and temperature are also of interest. 

Results for the friction ratio 

Without buoyancy considerations, the results of the friction 
ratio for a curved pipe flow with finite curvature ratio have 
been reported by Larrain and Bonilla (1970), Austin and Scader 
(1973), Soh and Bcrger (1987), and Yang and Chang (1993). 
Figure 2 shows excellent agreement in its comparison of the 
present results of the friction ratio with those of the previous 
studies for the cases without buoyancy effects (Ra = 0). It is 
clearly shown in Figure 2 that the friction ratio becomes larger, 
as expected, when the buoyancy effect is taken into account 
(Ra > 0). This increase of the friction ratio by the buoyancy 
effect becomes less prominent when the flow Dean number 
becomes sufficiently large that the centrifugal force becomes 
dominant over the buoyancy force. A larger curvature ratio 
enhances the secondary flow but also increases the friction 
ratio, as shown in Figure 3. Figures 2 and 3 also show that the 
friction ratio increases with an increased Dean number. 

Results for the secondary f low pattern 

Figure 4 shows the effects of the Rayleigh number and the 
curvature ratio on the secondary flow pattern. In Figure 4, the 
left-hand side represents the inner wall of the curved pipe, and 
the right-hand side represents the outer wall. Three values of 
the curvature ratio (6 = 0.1, 0.25, and 0.8) and three values of 
Rayleigh number (Ra = 0, 40, and 80) are shown for the case 
in which De = 100 and Pr = 1. The case in which Ra = 0 
corresponds to an unheated flow, and the secondary flow is 
induced solely by centrifugal force. When Ra = 40, both 
centrifugal and buoyancy forces are present. The dividing 
streamline is distorted toward the lower portion of the pipe 
when the curvature ratio is increased. It can also be seen that 
the upper cell becomes the dominant flow region when 6 = 0.8. 
Note that the values of stream function are equally spaced in 
the figure. Consequently, the dense streamlines of the upper 
cell mean that the flow is faster, while the sparse streamlines 
of the lower cell correspond to a slower flow. Thus, the 
secondary flow has only one cell (the upper cell) dominant. 
When Ra = 80, the secondary flow field is more dominated by 
the buoyancy effect. The dividing streamline is more distorted, 
and the secondary flow with one dominant cell is more obvious. 
This phenomenon is qualitatively in accord with the 
experimental observation made by Cheng and Yuen (1987), and 
has not been reported theoretically owing to the restricted small 
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Figure 5 Axial velocity and temperature contours for various De 
( R a = 4 0 ,  P r = 1 , 6 = 0 . 1 )  

curvature ratio imposed in previous numerical studies. The 
crescent region appearing in Chang and Yuen's photograph 
should be the lower cell, which flows much more slowly than 
does the upper cell. 

Results for the main f low 

It is well known that due to centrifugal force induced by the 
pipe curvature, the maximum axial velocity is displaced from 
the central axis of the pipe toward the outer wall (~b = 180°). 
However, when the pipe is heated, the combined effects of 

buoyancy and centrifugal forces will rotate the contour of the 
axial velocity. In Figure 5, where Ra = 40, & = 0.1, Pr = 1, and 
De = 10, the centrifugal force is very small, so the contour of 
the axial velocity is similar to that of a straight-tube flow. For 
De = 100, the centrigual force starts to shift the position of the 
maximum axial velocity. When De = 1,000, the combined effect 
of the buoyancy force and centrifugal force is very obvious in 
that the position of the maximum axial velocity has been 
displaced to the southeast corner of the pipe. The contour is 
almost symmetric about the line ~ = 25°-225 °, which indicates 
that the dividing streamline of the secondary flow lies 
approximately on this line. 

Results for the temperature field 

The effects of the buoyancy force and the centrifugal force on 
the temperature profiles are similar to those on the axial 
velocity profiles, and are shown in Figure 5. The other explicit 
parameter that affects the profiles of temperature field is the 
Prandtl number. As the Prandtl number becomes larger, the 
convection is more dominant, and the thermal boundary layer 
becomes thinner near the pipe wall. These phenomena are 
shown in Figure 6. A detailed discussion of the Pr effect has 
been given by Lee et al. (1985). 

Results for the heat transfer ratio 

The effects of Ra on the heat transfer ratio, Nuc/Nu,, are 
shown in Figure 7. The heat transfer ratio is shown to increase 
with the increased buoyancy effect. Also shown in this figure 
is that the heat transfer ratio becomes independent of the 
buoyancy force when the flow Dean number is high, and axial 
convection is dominant over transverse convection. On the 
other hand, Figure 8 shows that the heat transfer ratio 
decreases with increasing curvature ratio. The reason is that 
for the same Dean number (6Re,2), a higher & corresponds 
to a slower main flow, which results in a lower axial convective 
heat transfer rate. Figure 9 shows the effect of the Prandtl 
number on the heat transfer ratio. The heat transfer ratio is 
much higher for a high Pr fluid. 

P r = l  

w T 

P r = l O  0 0  
Prl00 C) 

Figure 6 Axial velocity and temperature contours for various Pr 
(De = 100, Ra = 4 0 ,  di =0 .1 )  
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Conclusions 

The present numerical study extends the previous works in the 
literature for the flow and heat transfer in a heated curved pipe 
by liberating the small curvature restriction and including the 
effect of the buoyancy force. The previous experimental 
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observation of the one-cell dominated secondary flow and the 
presence of the crescent region for a flow with high curvature 
ratio and buoyancy effect is predictable by the present 
calculation. The ranges of the parameters in this study are Dean 
number from 10 to 25,000, Prandtl number from 0.7 to 100, 
Rayleigh number from 0 to 320, and curvature ratio from 0.01 
to 0.8. The friction ratio is found to increase with increasing 
curvature ratio and buoyancy effect, while, on the other hand, 
the heat transfer ratio increases with increasing buoyancy effect 
but decreases with increasing curvature ratio. Both heat 
transfer and friction ratio increase with increasing Dean 
number. The present study suggests the following correlations: 

_fc = 0.689DeO.O817prO.OOSlRaO.OO6S~o.oo84 
A 

Nu¢ = 0.42DeO.lllprO.21RaO.OS13¢$_o.o974 
Nu s 

Nuc/Nus 0.61DeO.O293prO.202RaO.0445~5- o.106 
fo/f~ 

The correlation coefficients, R 2, are 0.932, 0.985, and 0.973, 
respectively. 
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